martes, 7 de abril de 2015

Semana 5


DEFORMACIÓN DE LA CORTEZA TERRESTRE Y LOS SISMOS:
Mecánica de la deformación de rocas:
Mecánica de rocas es la ciencia teórica y aplicada al comportamiento mecánico de rocas y de macizos rocosos. Tal como en geología, es la rama de la mecánicaconcerniente a la respuesta de estos entes litológicos a los campos de fuerzas de su ambiente físico. La mecánica de rocas forma parte de la geomecánica,disciplina relativa a las respuestas mecánicas de todos los materiales geológicos, incluidos los suelos. Aplicada a ingeniería geológicadel petróleo y civil, se enfoca a puesta en operación de los principios de ingeniería mecánica a diseño de estructuras litológicas generadas por:
Origen: Geomecánica
El término geomecánica se aplica al conjunto de disciplinas relacionadas con geologíaingeniería civil,ingenieria de minas y geofísica, para estudio de las condiciones de estabilidaddeformación y resistencia de macizos rocosos. Parcialmente se le puede considerar sinónimo de mecánica de rocas, pues además comprende mecánica de suelos.
La geomecánica se distingue de la geotecnia en que en ésta se atienden principalmente terrenos no consolidados. En algunos casos, para el avance y la culminación de proyectos constructivos, las características geológicas locales requieren integración de ambas disciplinas. Se puede dividir en:
  • Geomecánica de superficie
  • Geomecánica aplicada al subsuelo

Geomecánica de superficie

De manera prevalente, en esta rama se estudia:
  • Estabilidad de:
  1. Taludes rocosos
  2. Colapsos rocosos.
  3. Túneles de carreteras y ferrovías.

Geomecánica aplicada al subsuelo

En esta rama, principalmente desarrollada en el ámbito de la investigación petrolera, se indagan primordialmente las propiedades geomecánicas de las rocas atravesadas (o por atravesar) por la perforación de un pozo, con el fin de:
  1. Derrumbes de las paredes del pozo
  2. Fracturación involuntaria de las paredes de roca circundante al pozo.








Diastrofismo:
El diastrofismo es el conjunto de procesos y fenómenos geológicos de deformación, alteración y dislocación de la corteza terrestre por efecto de las fuerzas tectónicas internas.
Teoría geomorfológica que atribuye el origen de algunos fenómenos de erosión así como de las formas que de ellos se deriven a una serie de deformaciones lentas o torcimientos de la corteza terrestre.1
Por oposición al catastrofismo, el diastrofismo explica las deformaciones terrestres por fenómenos de curvatura y de plegamiento extremadamente lentos. En ciertos casos se trata de epirogénesis: el levantamiento o el hundimiento de la corteza abarca extensiones muy grandes; el radio de curvatura de las deformaciones se hace entonces muy grandes y los declives tienen escasa pendiente. En otros casos, las deformaciones son mucho más importantes, aunque netamente localizadas. Se trata entonces de orogénesis, proceso que ha dado lugar a la formación de grandes cordilleras. En la epirogénesis el fenómeno fundamental es el ascenso o descenso de grandes superficies; en la orogénesis, el plegamiento o fractura.
La causa principal por la que se produce el diastrofismo es la existencia de corrientes convectivas de magma en la astenosfera, las que determinan el desplazamiento de las placas tectónicas.
Las deformaciones continuas: Los pliegues. 

Las deformaciones continuas se manifiestan en la naturaleza en forma de pliegues.

Elementos de un pliegue. 

Son una serie de elementos geométricos.

Charnela.  Zona de máxima 
curvatura.
En dicho punto los estratos cambian de 
buzamiento.
Líneasdecharnela, unen los puntos de 
máxima curvatura. 
Líneasdecresta y  líneasdesurco
contienen puntos más altos y más bajos 
respectivamente. Coinciden con la línea 
de charnela son en los pliegues rectos.
Eje del pliegue. Línea imaginaria, posición no definida, cuya traslación lateral generaría la 
superficie del pliegue. Es el análogo a la generatriz de un cono o un cilindro.
Plano axial. Superficie que une todas las línea de charnela y divide el pliegue en dos partes.
Núcleo. Parte cóncava más interna del pliegue.
Traza axial. Línea resultante de la intersección del plano axial con la superficie del terreno.
Buzamiento. Ángulo diedro formado entre el flanco del pliegue con la horizontal. Siempre 
se toma el ángulo agudo.
Dirección. Ángulo formado por el eje del pliegue con el norte magnético.
Vergencia. Ángulo que forma el plano axial con el plano horizontal.
Inmersión. Ángulo formado por el plano horizontal y la línea de charnela medido sobre la 
vertical.
Cabeceo. Ángulo formado entre la línea de charnela y la horizontal medido sobre el plano 
axial.
Terminación periclinal. Zona final del eje del pliegue en la que el buzamiento de los 
flancos se atenúa cambiando de dirección



Las diaclasas:

Las diaclasas son fracturas de las rocas sin desplazamiento de los bloques. Los mecanismos de 

formación son:
Desecación. Rocas hidratadas sometidas a fuerte insolación. Sufre tensiones encaminadas a 
reducir su volumen, de manera que dos zonas con tensiones en sentido contrario fracturan la 
roca. Ejemplo. Suelos arcillosos resecados por la acción del Sol. Aspecto escamoso, planos 
paralelos a la superficie y formas poligonales.
Enfriamiento.Reducción de volumen como consecuencia del enfriamiento. Diaclasas típicas 
de las coladas de lava basáltica, en forma de prismas hexagonales.
Descompresión. Una masa rocosa que se aproxima a la superficie pierde su cobertera, por 
tanto su presión litostática y sufrirá una expansión volumétrica en dos sentidos: paralelo a la 
superficie y otro en sentido ortogonal(perpendicular) al anterior. Resultado: fracturación a 
favor de esos planos.
Tectónica.Además de esquistosidad, pliegues y fallas, las tensiones pueden producir 
diaclasas. En los pliegues: 
o tensión divergente en zonas de máxima convexidad
o tensión convergente en la zona cóncava, interna del pliegue.
En ambas zonas se forman diaclasas. 
Lo mismo ocurre con las fallas que suelen llevar asociado un sistema diaclasado.
Las Fallas. 
Deformaciones discontinuas con desplazamiento de bloques. Presentan una serie de elementos.
Plano de falla. Plano que contiene la rotura de la roca. A ambos lados se forman dos 
bloques con un desplazamiento relativo. Lo normal del plano es que sea una superficie 
alabeada.
Sirve para definir la dirección y el buzamiento, elementos utilizados para situarlas en los 
mapas y planos.
Traza. Intersección del plano de falla con la superficie del terreno.
Dirección. Ángulo formado entre la traza y el norte magnético.
Buzamiento. Ángulo que forma el plano de la falla con la horizontal.
Labios. Cada uno de los bloques a ambos lados del plano de falla. El movimiento relativo en 
fallas directas e inversas permite establecer un labio levantado y otro hundido.
Espejo de falla. Superficie del plano de falla visible tras la ruptura del plano de falla.
Estrías de falla. Marcas producidas en el espejo por la fricción del movimiento de los labios.
Sirven para indicar la dirección y el sentido del movimiento.
Salto de falla. Desplazamiento mensurable entre los labios. Desplazamiento medible en 
diferentes posiciones.
Salto según buzamiento(AD).
Salto vertical(AE).
Salto transversal(AB).
Salto en dirección o longitudinal(AC).
Escarpe de fallamide la distancia entre el punto más alto del labio levantado y el más alto 
del labio hundido. 
Movimientos Sísmicos:
Un terremoto (del latín terra ‘tierra’, y motus ‘movimiento’), también llamado seísmo o sismo (del griego σεισμός [seismóstemblor o temblor de tierra) es un fenómeno de sacudida brusca y pasajera de la corteza terrestre producida por la liberación de energía acumulada en forma de ondas sísmicas. Los más comunes se producen por la ruptura de fallasgeológicas. También pueden ocurrir por otras causas como, por ejemplo, fricción en el borde de placas tectónicas, procesosvolcánicos o incluso pueden ser producidas por el hombre al realizar pruebas de detonaciones nucleares subterráneas.

Causas

La causa de los terremotos se encuentra en la liberación de energía de la corteza terrestre acumulada a consecuencia de actividades volcánicas y tectónicas, que se originan principalmente en los bordes de la placa.
Aunque las actividades tectónicas y volcánicas son las causas principales por las que se generan los terremotos hay otros factores que pueden originarlos:
  • Acumulación de sedimentos por desprendimientos de rocas en las laderas de las montañas, hundimiento de cavernas.
Estos fenómenos generan eventos de baja magnitud, que generalmente caen en el rango de microsismos: temblores detectables sólo por sismógrafos.

Localizaciones

Los terremotos tectónicos suelen ocurrir en zonas donde la concentración de fuerzas generadas por los límites de las placas tectónicas dan lugar a movimientos de reajuste en el interior y en la superficie de la Tierra. Por este motivo los sismos de origen tectónico están íntimamente relacionados con la formación de fallas geológicas. Comúnmente acontecen al final de un ciclo sísmico: período durante el cual se acumula deformación en el interior de la Tierra que más tarde se liberará repentinamente. Dicha liberación se corresponde con el terremoto, tras el cual la deformación comienza a acumularse nuevamente.
El punto interior de la Tierra donde se origina el sismo se denomina foco sísmico o hipocentro. El punto de la superficie que se halla directamente en la vertical del hipocentro —que, por tanto, es el primer afectado por la sacudida— recibe el nombre de epicentro.
En un terremoto se distinguen:
  • Hipocentro, zona interior profunda, donde se produce el terremoto.
  • Epicentro, área de la superficie perpendicular al hipocentro, donde con mayor intensidad repercuten las ondas sísmicas.
La probabilidad de ocurrencia de terremotos de una magnitud determinada en una región concreta viene dada por una distribución de Poisson. Así la probabilidad de ocurrencia de k terremotos de magnitud M durante un período T en cierta región está dada por:
Donde
T_r(M)\, es el tiempo de retorno de un terremoto de intensidad M, que coincide con el tiempo medio entre dos terremotos de intensidad M.

Propagación

Daños causados por el terremoto del año 1960 en ValdiviaChile. Es el sismo más fuerte registrado en la historia de la humanidad: 9,5 grados en la escala de Richter.
El movimiento sísmico se propaga mediante ondas elásticas (similares a las del sonido) a partir del hipocentro. Las ondas sísmicas son de tres tipos principales:
  • Ondas longitudinales, primarias o P. Ondas de cuerpo que se propagan a velocidades de 8 a 13 km/s en el mismo sentido que la vibración de las partículas. Circulan por el interior de la Tierra, donde atraviesan líquidos y sólidos. Son las primeras que registran los aparatos de medición o sismógrafos. De ahí su nombre «P».[cita requerida].
  • Ondas transversales, secundarias o S. Son ondas de cuerpo más lentas que las anteriores (entre 4 y 8 km/s). Se propagan perpendicularmente en el sentido de vibración de las partículas. Atraviesan únicamente sólidos. En los sismógrafos se registran en segundo lugar.
  • Ondas superficiales. Son las más lentas: 3,5 km/s. Resultan de interacción de las ondas P y S a lo largo de la superficie terrestre. Son las que causan más daños. Se propagan a partir del epicentro. Son similares a las ondas (olas) que se forman sobre la superficie del mar. En los sismógrafos se registran en último lugar.


Terremotos inducidos

Se denomina sismo inducido o terremoto inducido a los sismos o terremotos producidos como consecuencia de alguna intervención humana que altera el equilibrio de fuerzas en la corteza terrestre. Entre las principales causas de sismos inducidos podemos mencionar: la construcción de grandes embalses; el fracking; los ensayos de explosiones nucleares.

Grandes embalses

Los reservorios grandes pueden alterar la actividad tectónica. La probabilidad de que produzca actividad sísmica es difícil de predecir; sin embargo, se deberá considerar el pleno potencial destructivo de los terremotos, que pueden causar desprendimientos de tierra, daños a la infraestructura de la represa, y la posible falla de la misma.
Los datos sobre el aumento del terremoto son impresionantes: De 1976 a 2007, en Oklahoma cada año se habían registrado sólo un terremoto de magnitud 3 o mayor. Pero desde 2008 hasta 2013 sismos de esa magnitud eran 44 en cada año. La novedad de este estudio —en comparación con otros estudios que ya había vinculados estadísticamente fracking y terremotos en Oklahoma, Texas, Arkansas y Kansas— es que cuenta con ayuda de simulaciones informáticas del mecanismo de "viaje" del agua en el subsuelo. No sólo se incrementó los terremotos, determina el estudio, sino que evidencia como los terremotos se han registrado mucho más lejos de la planta de lo que hubiéramos esperado. El debate acerca de la peligrosidad de fracking sucediendo durante años, y este estudio ciertamente alimentae las protestas de aquellos que se oponen a este tipo de actividad.2

Explosiones nucleares

La onda de presión de explosiones subterráneas pueden propagarse a través de la tierra y causar terremotos menores.3 La teoría sugiere que una explosión nuclear podría disparar rupturas de fallas geológicas y así causar un sismo mayor a distancias de pocos cientos de kilómetros del punto de impacto.4
Pronto se deberían controlar mejor estos sismos inducidos y, en consecuencia, preverlos. Tal vez, pequeños sismos inducidos podrían evitar el desencadenamiento de un terremoto de mayor magnitud.

Escalas de magnitudes

Entre 1963 y 1998 ocurrieron 358 214 terremotos de mayor o menor intensidad.
  • Escala sismológica de Richter, también conocida como escala de magnitud local (ML), es una escala logarítmica arbitraria en la que se asigna un número para cuantificar el efecto de un terremoto.

Escalas de intensidades

  • Escala Medvédev-Sponheuer-Kárník, también conocida como escala MSK o MSK-64. Es una escala de intensidad macrosísmica usada para evaluar la fuerza de los movimientos de tierra basándose en los efectos destructivos en construcciones humanas y en cambio de aspecto del terreno, así como en el grado de afectación a la población. Consta de doce grados de intensidad. El más bajo es el número uno. Para evitar el uso de decimales se expresa en números romanos.
  • Escala Shindo o escala cerrada de siete, conocida como escala japonesa. Más que en la intensidad del temblor, se centra en cada zona afectada, en rangos entre 0 y 7.

Los diez mayores terremotos de la historia reciente

Efectos de los terremotos

Los efectos de un terremoto pueden ser uno o más de los que se detallan a continuación.

Movimiento y ruptura del suelo

Movimiento y ruptura del suelo son los efectos principales de un terremoto en la superficie terrestre, debido a roce de placas tectónicas, lo cual causa daños a edificios o estructuras rígidas que se encuentren en el área afectada por el sismo. Los daños en los edificios dependen de: a) intensidad del movimiento; b) distancia entre la estructura y el epicentro; c) condiciones geológicas y geomorfológicas que permitan mejor propagación de ondas.

Corrimientos y deslizamientos de tierra

Terremotos, tormentas, actividad volcánica, marejadas y fuego pueden propiciar inestabilidad en los bordes de cerros y de otras elevaciones del terreno, lo cual provoca corrimientos en la tierra.

Incendios

El fuego puede originarse por corte del suministro eléctrico posteriormente a daños en la red de gas de grandes ciudades. Un caso destacado de este tipo de suceso es el terremoto de 1906 en San Francisco, donde los incendios causaron más víctimas que el propio sismo.

Licuefacción del suelo

La licuefacción ocurre cuando, por causa del movimiento, el agua saturada en material, como arena, temporalmente pierde su cohesión y cambia de estado sólido a líquido. Este fenómeno puede propiciar derrumbe de estructuras rígidas, como edificios y puentes.

Maremoto

Los tsunamis son enormes ondas marinas que al viajar desplazan gran cantidad de agua hacia las costas. En el mar abierto las distancias entre las crestas de las ondas marinas son cercanas a 100 km. Los períodos varían entre cinco minutos y una hora. Según la profundidad del agua, los tsunamis pueden viajar a velocidades de 600 a 800 km/h. Pueden desplazarse grandes distancias a través del océano, de un continente a otro.
El punto de origen de un terremoto se denomina hipocentro. El epicentro es el punto de la superficie terrestre directamente sobre el hipocentro. Dependiendo de su intensidad y origen, un terremoto puede causar desplazamientos de la corteza terrestre, corrimientos de tierras, tsunamis o actividad volcánica. Para medir la energía liberada por un terremoto se emplean diversas escalas, entre ellas, la escala sismológica de Richter es la más conocida y utilizada en los medios de comunicación.



Semana 4

GENESIS DE LAS ROCAS:
Roca:
Las rocas están sometidas a continuos cambios por las acciones de los agentes geológicos, según un ciclo cerrado, llamado ciclo litológico o ciclo de las rocas, en el cual intervienen incluso los seres vivos.
Las rocas están constituidas, en general, por mezclas heterogéneas de diversos materiales homogéneos y cristalinos, es decir, minerales. Las rocas poliminerálicas están formadas por granos o cristales de varias especies mineralógicas y las rocas monominerálicas están constituidas por granos o cristales de un mismo mineral. Las rocas suelen ser materiales duros, pero también pueden ser blandas, como ocurre en el caso de las rocas arcillosas o arenosas.
En la composición de una roca pueden diferenciarse dos categorías de minerales:
Minerales esenciales o minerales formadores de roca – Son los minerales que caracterizan la composición de una determinada roca, los más abundantes en ella. Por ejemplo, el granito siempre contiene cuarzofeldespato y mica.
Minerales accesorios – Son minerales que aparecen en pequeña proporción (menos del 5 % del volumen total de la roca) y que en algunos casos pueden estar ausentes sin que cambien las características de la roca de la que forman parte. Por ejemplo, el granito puede contener zircón y apatito.
DEFINICION:
En geología se le denomina roca a la asociación de uno o varios minerales, natural, inorgánica, heterogénea, de composición química variable, sin forma geométrica determinada, como resultado de un proceso geológico definido.

Tipos de rocas:



Las rocas se pueden clasificar atendiendo a sus propiedades, como la composición química, la textura, la permeabilidad, entre otras. En cualquier caso, el criterio más usado es el origen, es decir, el mecanismo de su formación. De acuerdo con este criterio se clasifican en ígneas (o magmáticas), sedimentarias y metamórficas, aunque puede considerarse aparte una clase de rocas de alteración, que se estudian a veces entre las sedimentarias.


El ciclo de las rocas o ciclo petrologico:

En el contexto del tiempo geológico las rocas sufren transformaciones debido a distintos procesos. Los agentes geológicos externos producen la meteorización yerosión, transporte y sedimentación de las rocas de la superficie.
Se llama meteorización a la acción geológica de la atmósfera, que produce una degradación, fragmentación y oxidación. Los materiales resultantes de la meteorización pueden ser atacados por la erosión y transportados. La acumulación de fragmentos de roca desplazados forman derrubios. Cuando cesa el transporte de los materiales, éstos se depositan en forma de sedimentos en las cuencas sedimentarias, unos sobre otros, formando capas horizontales (estratos).
Los sedimentos sufren una serie de procesos (diagénesis) que los transforman en rocas sedimentarias, como la compactación y cementación; se produce en las cuencas sedimentarias, principalmente los fondos marinos.
La compactación es el proceso de eliminación de huecos en un sedimento, debido al peso de los sedimentos que caen encima. La cementación es consecuencia producida por la compactación; consiste en la formación de un cemento que une entre sí a los sedimentos (los fragmentos de rocas).

ROCAS IGNEAS:
Según cómo y dónde se enfría el magma se distinguen dos grandes tipos de rocas ígneas, las plutónicas o intrusivas y lasvolcánicas o extrusivas.1

Rocas plutónicas o intrusivas


Granito, la roca plutónica más común.
Las rocas plutónicas o intrusivas se forman a partir de magma solidificado en grandes masas en el interior de la corteza terrestre. El magma, rodeado de rocas preexistentes (conocidas como rocas caja), se enfría lentamente, lo que permite que los minerales formen cristales grandes, visibles a simple vista, por lo que son rocas de "grano grueso". Tal es el caso delgranito o el pórfido.
Las intrusiones magmáticas a partir de las cuales se forman las rocas plutónicas se denominan plutones, como por ejemplo los batolitos, los lacolitos, los sills y los diques.
Las rocas plutónicas solo son visibles cuando la corteza asciende y la erosión elimina las rocas que cubren la intrusión. Cuando la masa de rocas queda expuesta se denomina afloramiento. El corazón de las principales cordilleras está formado por rocas plutónicas que cuando afloran, pueden recubrir enormes áreas de la superficie terrestre.

Rocas volcánicas o extrusivas


Basalto (roca volcánica); las líneas claras muestran la dirección del flujo de lava.
Las rocas volcánicas o extrusivas se forman por la solidificación del magma (lava) en la superficie de la corteza terrestre, usualmente tras una erupción volcánica. Dado que el enfriamiento es mucho más rápido que en el caso de las rocas intrusivas, los iones de los minerales no pueden organizarse en cristales grandes, por lo que las rocas volcánicas son de grano fino (cristales invisibles a ojo desnudo), como el basalto, o completamente amorfas (una textura similar al vidrio), como la obsidiana. En muchas rocas volcánicas se pueden observar los huecos dejados por las burbujas de gas que escapan durante la solidificación del magma.
El volumen de rocas extrusivas arrojadas por los volcanes anualmente depende del tipo de actividad tectónica:2
, como la cordillera de los Andes o los arcos insulares del Pacífico.

Clasificación: textura y composición


Riolita (textura afanítica).
Brecha volcánica (texturapiroclástica).
La clasificación de los muchos tipos diferentes de rocas ígneas, puede proveernos de importante información, sobre las condiciones bajo las cuales se formaron. Dos importantes variables, usadas para la clasificación de rocas ígneas, son el tamaño de partícula, que depende de su historia de enfriamiento, y la composición mineral de la roca. Feldespatoscuarzo,feldespatoidesolivinaspiroxenosanfíboles, y micas, son minerales importantes que forman parte de casi todas las rocas ígneas, y son básicos en la clasificación de estas rocas. Los otros minerales presentes, se denominan minerales accesorios. Son muy raras las rocas ígneas con otros minerales esenciales.
Las rocas ígneas se clasifican de acuerdo con su origen, textura, mineralogía, composición química y la geometría del cuerpo ígneo.

Textura[editar]

La textura de una roca ígnea se usa para describir el aspecto general de la misma en función del tamaño, forma y ordenamiento de los cristales que la componen. En un esquema simplificado se pueden distinguir hasta seis texturas ígneas:3
  • Textura vítrea. Las rocas con textura vítrea se originan durante algunas erupciones volcánicas en las que la roca fundida es expulsada hacia la atmósfera donde se enfría rápidamente; ello que ocasiona que los iones dejen de fluir y queden desordenados antes de que puedan unirse en una estructura cristalina ordenada. La obsidiana es un vidrio natural común producido de este modo.
  • Textura afanítica o de grano fino. Se origina cuando el enfriamiento del magma es relativamente rápido por lo que los cristales que se forman son de tamaño microscópico y es imposibles distinguir a simple vista los minerales que componen la roca. Es un ejemplo la riolita.
  • Textura fanerítica o de grano grueso. Se origina cuando grandes masas de magma se solidifican lentamente a bastante profundidad, lo que da tiempo a la formación de cristales grandes de los diferentes minerales. Las rocas faneríticas, como el granito están formadas por una masa de cristales intercrecidos aproximadamente del mismo tamaño y lo suficientemente grandes como para que los minerales individuales puedan identificarse sin la ayuda del microscopio.
  • Textura porfídica. Son rocas con cristales grandes (llamados fenocristales) incrustados en una matriz (llamada pasta) de cristales más pequeños. Se forman debido a la diferente temperatura de cristalización de los minerales que componen la roca, con lo que es posible que algunos cristales se hagan bastante grandes mientras que otros estén empezando a formarse. Una roca con esta textura se conoce como pórfido.
  • Textura pegmatítica. Las pegmatitas son rocas ígneas de grano especialmente grueso, formadas por cristales interconectados de más de un centímetro de diámetro. La mayoría se hallan en los márgenes de las rocas plutónicas ya que se forman en las últimas etapas de la cristalización, cuando el magma contiene un porcentaje inusualmente elevado de agua y de otros volátiles como el cloro, el flúor y el azufre.
  • Textura piroclástica. Algunas rocas ígneas se forman por la consolidación de fragmentos de roca (cenizas, lapilli, gotas fundidas, bloques angulares arrancados del edificio volcánico, etc.) emitidos durante erupciones volcánicas. No están formadas por cristales y su aspecto recuerda al de las rocas sedimentarias. La toba volcánica es un ejemplo de este tipo de roca.
Las rocas plutónicas acostumbran a tener texturas faneríticas, porfídicas y pegmatíticas, mientras que las rocas volcánicas son de textura vítrea, afanítica o piroclástica.

Composición química:


iones
 
aluminio, calcio, sodio, potasio, magnesio y hierro constituyen aproximadamente el 98 % en peso de los magmas. Cuando éstos se enfrían y solidifican, dichos elementos se combinan para formar dos grandes grupos de silicatos:3Las rocas ígneas están compuestas fundamentalmente por 
  • Silicatos oscuros o ferromagnésicos. Son minerales ricos en hierro y en magnesio y bajo contenido en sílice. Por ejemplo, el olivino, el anfíbol y el piroxeno.
  • Silicatos claros. Son minerales con mayores cantidades de potasio, sodio y calcio que de hierro y magnesio, y más ricos en sílice que los oscuros. El cuarzo, la moscovita y los feldespatospertenecen a este grupo.
Las rocas ígneas pueden clasificarse, en función de la proporción de silicatos claros y oscuros, como sigue:
  • Rocas félsicas o de composición granítica. Son rocas ricas en sílice (un 70 %), en las que predomina el cuarzo y el feldespato, como por ejemplo el granito y la riolita. Son, en general, de colores claros, y tienen baja densidad. Además de cuarzo y feldespato poseen normalmente un 10 % de silicatos oscuros, usualmente biotita y anfíbol. Las rocas félsicas son los constituyentes principales de la corteza continental.
  • Rocas andesíticas o de composición intermedia. Son las rocas comprendidas entre las rocas félsicas y máficas. Reciben su nombre por la andesita, las más común de las rocas intermedias. Contienen al menos del 25 % de silicatos oscuros, principalmente anfíbolpiroxeno y biotita más plagioclasa. Estas rocas están asociadas en general a la actividad volcánica de los márgenes continentales (bordes convergentes).
  • Rocas máficas o de composición basáltica. Son rocas que tienen grandes cantidades de silicatos oscuros (ferromagnésicos) y plagioclasa rica en calcio. Son, normalmente, más oscuras y densas que las félsicas. Los basaltosson las rocas máficas más abundantes ya que constituyen la corteza oceánica.
  • Rocas ultramáficas. Roca con más de 90 % de silicatos oscuros. Por ejemplo, la peridotita. Aunque son raras en la superficie de la Tierra, se cree que las peridotitas son el constituyente principal del manto superior.
La siguiente tabla, es una subdivisión simple de rocas ígneas, de acuerdo a su composición y origen:
Clasificación química, también se extiende para diferenciar rocas, que son químicamente similares, de acuerdo al diagrama TAS, por ejemplo:
  • Ultrapotásicas; rocas conteniendo concentración molar K2O/Na2O > 3.
  • Peralcalinas; rocas conteniendo concentración molar (K2O + Na2O)/ Al2O3 > 1.
  • Peraluminosas; rocas conteniendo concentración molar (K2O + Na2O)/ Al2O3 < 1.

Rocas sedimentarias


Estratos de rocas sedimentarias.
Los procesos geológicos que operan en la superficie terrestre originan cambios en el relieve topográfico que son imperceptibles cuando se estudian a escala humana, pero que alcanzan magnitudes considerables cuando se consideran períodos de decenas de miles o millones de años. Así, por ejemplo, el relieve de una montaña desaparecerá inevitablemente como consecuencia de la meteorización y la erosión de las rocas que afloran en superficie. En realidad, la historia de una roca sedimentaria comienza con la alteración y la destrucción de rocas preexistentes, dando lugar a los productos de la meteorización, que pueden depositarse in situ, es decir, en el mismo lugar donde se originan, formando los depósitos residuales, aunque el caso más frecuente es que estos materiales sean transportados por el agua de los ríos, el hielo, el viento o en corrientes oceánicas hacia zonas más o menos alejadas del área de origen. Estos materiales, finalmente, se acumulan en las cuencas sedimentarias formando los sedimentos que, una vez consolidados, originan las rocas sedimentarias.
Se constituyen por diagénesis (compactación y cementación) de los sedimentos, materiales procedentes de la alteración en superficie de otras rocas, que posteriormente son transportados y depositados por el agua, el hielo y el viento, con ayuda de la gravedad o por precipitación desde disoluciones.1 También se clasifican como sedimentarios los depósitos de materiales organógenos, formados por seres vivos, como los arrecifes de coral, los estratos de carbón o los depósitos de petróleo. Las rocas sedimentarias son las que típicamente presentan fósiles, restos de seres vivos, aunque éstos pueden observarse también en algunas rocas metamórficas de origen sedimentario.
Las rocas sedimentarias se forman en las cuencas de sedimentación, las concavidades del terreno a donde los materiales arrastrados por la erosión son conducidos con ayuda de la gravedad. Las estructuras originales de las rocas sedimentarias se llaman estratos, capas formadas por depósito, que constituyen formaciones a veces de gran potencia (espesor).

Tipos:


Rocas detríticas: Conglomerados,areniscas y lutitas caolínicas (en primer término). Formación Utrillas (Cretácico), en SoriaEspaña.

Conjunto de algunas rocas Sedimentareas.
Por su composición se clasifican en:

Rocas metamórficas:


Mármol sin pulimentar.
En sentido estricto es metamórfica cualquier roca que se ha producido por la evolución de otra anterior al quedar está sometida a un ambiente energéticamente muy distinto de su formación, mucho más caliente o más frío, o a una presión muy diferente. Cuando esto ocurre la roca tiende a evolucionar hasta alcanzar características que la hagan estable bajo esas nuevas condiciones. Lo más común es el metamorfismo progresivo, el que se da cuando la roca es sometida a calor o presión mayores, aunque sin llegar a fundirse (porque entonces entramos en el terreno delmagmatismo); pero también existe un concepto de metamorfismo regresivo, cuando una roca evolucionada a gran profundidad —bajo condiciones de elevada temperatura y presión— pasa a encontrarse en la superficie, o cerca de ella, donde es inestable y evoluciona a poco que algún factor desencadene el proceso.
Las rocas metamórficas abundan en zonas profundas de la corteza, por encima del zócalo magmático. Tienden a distribuirse clasificadas en zonas, distintas por el grado de metamorfismo alcanzado, según la influencia del factor implicado. Por ejemplo, cuando la causa es el calor liberado por una bolsa de magma, las rocas forman una aureola con zonas concéntricas alrededor del plutónmagmático. Muchas rocas metamórficas muestran los efectos de presiones dirigidas, que hacen evolucionar los minerales a otros laminares, y toman un aspecto laminar. Ejemplos de rocas metamórficas, son las pizarras, los mármoles o las cuarcitas.